LBL24914 o 5

E Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA |
1. [ EARTH SCIENCES DIVISION

FMG, RENUM, LINEL, ELLFMG, ELLP, and DIMES:
Chain of Programs for Calculating and Analyzing Rig

Vi
Fluid Flow through Two-Dimensional Fracture ... ° ;E*WRLNCE
ELEY LABORATORY
y Networks—Theory and Design ,
fa] 3
. | o R ~ SEP 30 1988
D. Billaux, S. Bodea, and J. Long . _LIBrARY anp

NN :‘f.ENTS Qf_nnrm ..

February 1988

PN A

R

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

<2

+HlpHe—147



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not nccessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



LBL-24914

FMG, RENUM, LINEL, ELLFMG, ELLP, and DIMES:
Chain of Programs for Calculating and Analyzing
Fluid Flow through Two-Dimensional Fracture
Networks— Theory and Design

Daniel Billaux, Sorin Bodea, and Jane Long

Earth Sciences Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

February 1988

This work was supported by the Repository and Technology Program of the Office of
Civilian Radioactive Waste Management of the U.S. Department of Energy under
' Contract No. DE-AC03-76SF00098.



- iii -

Abstract

~ This report describes some of the programs developed at Lawrence Berkeley Laboratory
for network modelling. By themselves, these programs form a complete chain for the study of

the equivalent permeability of two-dimensional fracture networks.

FMG generates the fractures considered as line discontinuities, with any desired distribu-
tion of aperture, length, and orientation. The locations of these fractures on a plane can be
either specified or genefated randomly. The intersections of these fractures with each other,
and with the boundaries of a specified flow region, are determined, and a finite element line

network is output.

RENUM is a line network optimizer. Nodes very close to each other are merged,
deadends are' removed, and the nodes are then renumbered in order to minimize the bandwidth

of the corresponding linear system of equations.
LINEL computes the steady state flux through a mesh of line elements previously pro-
cessed by program RENUM. Equivalent directional permeabilitics are output.
| ELLFMG determines the three components of the permeability tensor which best fits the

directional permeabilities output by LINEL. A measure of the goodness fit is also computed.

Two plotting programs, DIMES and ELLP, help visualize the outputs of these programs.
DIMES plots the line network at various stages of the process. ELLP plots the equivalent per-

meability results.
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1.0 INTRODUCTION

Network deels are useful tools for understandir;g the hydrology of fractured rock. Such
sfudies ;of fracture hy&rology can proceed by adopfing a model for the network geometry,
éstimating ﬁle __ statistical distributiqn of the appropriate gebmetrié pérameters thfough ﬁeld
measure;ments, and generafing realizaﬁéné of 4 statistically identical networks. Once the
gedmetry of a particular realizaﬁon is spéciﬁed, ﬂbw througﬁ the network can be studied (Ldng
et al,, ‘1582). For example, oné might use such a procedure to study the average equivalent
permeability .df a fracture net@brk 'under various boundary condiﬁons or as a function of scale
of ‘measurement (Long and Witherspoon, 1985). Such a study might be part of a larger study
of hydrologic response to a perturbatioﬁ such as the éonstmction of an underground opening

containing nuclear waste.

The advantage of the network model approach is that one is able to configure tests of
system behavior in any manner desired. For instance, if we wish to know how the rock
behaves under a regional gradient which is approximately linear, we can impose a linear gra-
dient on the model. If we want to know the behavior as a function of scale, we simply change
the size of the model. In the field one is normally constrained to the approximately radial flow
imposed by a well test, and it may be difficult to know what volume is actually being tested
and how that volume is likely to behave under different boundary conditions. On the other
‘hand, numerical models must make assumptions about the fractures which may be false. For
instance, network models usually assume that flow occurs in the fractures as between parallel
plates, although in some cases, channellbing may dominate the flow. Also, it is difficult to
obtain appropriate data for the network geomectry and especially the hydraulic conductivity of
the individual fractures. Netwbrk modeling and in situ testing have complementary problems,

and therefore the uses of these two techniques should be complementai'y. An appropriate phi-
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| losophy is to improve the network model at least until one can explain the in situ test results

with the model.

Besides constituting a éomplete chain of programs for the study of :the equi\f;ient permea-
bility of two-dimensional fracture ﬁetworks, FMG, RENUM, LINEL and EI.'.LFMGMare also
part of a’ broader set of prdgrams capable-c;f modelling flow and transport in both two-'
dimensional and three-dimensional line ﬁetworks (Figure 1.1). FMG3D, DIS_CEL and DIMES’
. three-dirnensiond ca‘pabilitiés -are documented in Gilmour et al. (1986a and b). CHANGE is
documented in Billaux and. Long. (.1988a and b). TRINET is documented in Karésaki (1987).
The complete set of programs as described in Figure 1.1 is a unique tool for the modelling of

flow and transport in complex two- or three-dimensional fractured rock geometries.



FMG
Generate 2-D

FMG3D
. » Generate 3-D
Disc Fractures

CHANGE \

Line Fractures
Generate Channels DIMES (3-D)
DIMES (2-D) on 3-D Disc Fractures Plot 3-D Discs
Plot 2-D Mesh ‘ ’ \ .
DIMES (3-D)
Plot 3-D Discs
and Channels
‘RENUM
Reorder and Simplify
~ 2-Dor 3-D Line Mesh
DIMES (2-D) \ DIMES (3-D)
P'Zt g'ap"fr']ed Plot Simplified 3-D
o s " Discs and Channels
LINEL
Compute Steady-State - Y
Flow in 2-D or 3-D DISCEL
/ Mesh Compute Steady-State
ELLEMG Flow in 3-D Discs
Compute Equivalent
Permeability of 2-D
Mesh.
TRINET

Compute Transient Flow
~and Transport in 2-D
or 3-D Mesh

ELLP
Plot 2-D
Permeability Ellipse

Figure 1.1. Programs for 2-D and 3-D modelling of flow through fractured rocks.



2.0 FRACTURE MESH GENERATION PROGRAM FMG

The purpose of program FMG is to create a fracture network input file for the optimiza-
tion program, RENUM. To do this, FMG can either start with a specified fracture system or -
generate a random systém_based on stochastic variables provided by the user. By either pro-
cess, the location, orientation, length, and aperture of all fractures in a generation region are
determined. Next, FMG identifies only those fractures that are within a subregion called the
flow region and are éonhected_ by at léaét :one path to its boundaries. FMG determines the
boundary nodes which are thc intersections between fractures and flow region boundary lines
and the intexSectioné between fractures, which are called internal nodes. Non-conducting frac-
tures. may be eliminated from the fracture system. The geometric information needed to calcu-
| late flow is written into a file to be read by RENUM. RENUM will optimize the mesh. Flow

through the fracturé network of the flow region will be calculated by LINEL.

The first step is to generate a primary fracture system within a rectangular or circular
region called the generation region. The fracture system is generated using one or more frac-
ture sets. The number of sets, the number of fractures per set and the dimensions of the gen-
erationA region [xgene, ygene] or [rgene] are specified by the user »in the file FMG.INP. The
fracture characteristics (coordinates of fracture center, orientation, length and aperture) may

either be specified by the user or stochastically generated on a set by set basis.

Distribution functions that can be used to generate fracture orientation angles, lengths,
and apertures currently include normal, lognormal, exponential, uniform, and normal with an
option to correlate fracture aperture to fracture length. Fracture lengths are usually éllowed to
vary lognormally. The fracture apertures are usually generated éssuming that apertures are log-'
normally distributed within a set. In general, field data will dictate which distribution function

is appropriate for each fracture characteristic. The fractures extending beyond the boundary of



the generation region are truncated.

There are two options for stochastically generating the fracture mesh. In the first option

([nsgene]=0) the fracture network is generated set by set for the entire generation region such -

that the fracture centers are randomly located and uniformly distﬁbuted throughout it. In the
second option ([nsgene]>0) the generation region is divided into a number of square or rectan-
gle subregions, and the generation of the fracture mesh is made(by_ subregions. In this case the
fracture characteristics are either read in or generated for the first set and each subregion,
second set and each subregion and so on, until the number of sets [nsets] is exhausted. The
. fracture characteristics are stored in the array [frac(nfrc,10)] to be used in later computations.
The option of dividiﬁg the' generaﬁon feéidh into subregions and generating the fracture net-
. work by sub’regions. was introduced to obtain a heterogeneous (i.e. “spatia]ly";'éﬁable”) distri-

bution of the mesh characteristics in the generation region.

Next, a rectangular or circular flow region is defined within the generation région. Input
parameters that define the flow region include the two side lengths [xmesh, ymesh] and the
orientation angle (0), or the radius 6f ‘the flow region A[rmesh]. A circular hole can also be
specified when a circular flow region is used. Its center [xhole, yhole] and radius [rhole] are
specified by the user. The flow region is centered in the generation region. For a given pri-
mary fracture system, any number of flow regions of varyiﬁg size and origntation or with
different holes, may be defined and corresbonding flow meshes generated;

The system of fractures lying Qithin the flow region is deténnined by comparing the
position of each fracture with the position of the four boundary line}s or with the position of the
flow and hole boﬁndary circles. Fraémres lying entirely inside the flow region are saved and
fractures lying entirely outside &e flow region are discarded. Fractures intersecting boundary
lines are saved and the intersection(s) are stored as boundary nodes. A fracture ma& intersect

more than one boundary line (depending on the geometry of the flow region, fracture location

and length) and, therefore, contain more than one boundary node. Fracture lengths are trun-.

cated at boundary lines, and only the part falling inside the flow region and outside the hole (if

>
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any) is used to solve for flow in the fracture network.

The system of fractures contributing to flow through the region is determined next. Inter-
sections between fractures are found and stored as internal nodes and the segment between two
consecutive nodes is defined as an element. Flow in a fracture can take place only through the
elements of the fracture network so that in determining the fracturé network for a steady state
computation, any fracture contaihing less than two nodes cannot conduct flow and may, there-
fore, be discarded from the system of conducting fractures. The program starts with the frac-
tures that intersect the flow tegion boundaries and determines the fractures they intersect. Then
it considers the fractures it has just found and looks for new fractures intersecting them. This
process goes on untii ih‘ere are no‘ mofe ﬁéctures to be checked. As mentioned at each level

the non-conducting fractures are discarded.

Fin‘ally,'. flow network information is prepared and written for input to the mesh optimiza-
tion code, RENUM. Nodal armys are assembled from stored boundary and internal nodes on
conducting fractures in the flow region. All necessary run identification, fracture system, flow
region, and nodal. data are written to a file. This section describes the program FMG. The

user’s guide for the program as well as a listing of the code are provided in a separate report.

2.1 Generation of Fracture System

A primary fracture system, consisting of one or more sets of linear fractures randomly
distributed within a rectangular or circular generation region, is created and fractures extending

beyond the boundary are truncated.

2.1.1 Fracture System Characteristics
In the stochastic mode the primary fracture system is generated using parameters
specified by the user. These include:

e  the dimensions of the rectangular generation region, xg and yg([xgene],[ygene]), or
r ([rgene]) -

° the number of fracture sets [nsets],
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e either the number of fractures per set [nfrac) or the fracture density (i.e., number of
fractures per unit area) per set [rlamb]

° distribution parameters for generating fracture onentatron a.ngles, lengths, and aper-
tures. -

The fracture centers are randomly generated within the region. The main program, FMG, calls
subroutine FRAGEN to read input parameters and coordinate the generation of fracture charac-
teristics. This section describes how FRAGEN works in the stochastic mode. Altematively
fracture centers, orientation ‘angles,,lengths, and apertures can be specified for any or all frac-

ture sets.

Fracture Centers. The fracture centers are generated by either of two subroutines
_ RECTXY and CIRCXY. o

Subroutine RANDXY generates centers randomly distributed throughout a rectangular
region. Coordinates of fracture centers (X,, y) are computed by generating doublets of random
numbers, uniformly distributed between zero and one, then scaling them by rnultiplying by the
length of the generation region [xgene] ([ygene]), and subtracting 1/2 [xgene] (1/2 [ygene]).

This makes the center of the generation region the origin of the rectangular coordinate system.

Subroutine CIRCXY generates centers randomly distributed throughout a circular region.
. The coordinates (X, y.) are computed by generating doublets of random numbers (a, b), uni-
fonnly distributed between zero and one, subtracting 0.5 from them, and then keeping only the
pairs of numbers such that
a® + b <025

a and b are then scaled by multiplying them by twice the radius of the generation regien
2*[rgene]. |

Orientation. The orientation of each fracture line is determined by the angle which the
fracture forms with the x-axis of the generation region. Fracture orientation angles are either
input or generated by the program. If statistically generated, the mean orientation of each frac-

ture set is required as well as other parameters, depending on the distribution chosen.
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Fracture Lengths and Apertures. The length and aperture of each fracture are gen-
erated according to a normal, lognormal or exponeritial distribution.. The generation procedure
“for the first two disﬁbuﬁon§ requires the mean [ev] and standard deviation [sd] be speciﬁed
for each fracture set. The exponential distribution requires only the mean. Apertures may also

be correlated with fracture lengths (see the use of subroutine NORMD1).
Statistical Simulation

Random number generator. The statistical distribution subroutines and RANDXY
use a random number genérator called GGUBFS which is an International Mathematical and
Statistical Libréry (IMSL) subroutine. GGUBFS retums random numbers uniformly distributed
between zero-and one and requires a doﬁble precision seed value [dseed]. GGUBFS retumns a
different raxidom nqmber' each time it is called within a program. However the same sequénce
of randoﬁl nﬁmbers is produced each time the program is run with the same initial seed. This

mode of operation is optionally overridden by generating an arbitrary seed,

dseed = SECNDS(0.0) * 100.0. (2-2)
where SECNDS is a VAX-11 FORTRAN function subprogram which returns the system time
of day in seconds less the value of its argument. An input flag [iranf] controls whether the
seed is read or generated, and the initial seed is printed out. Since the seed defines the starting
location for the random number generator, the user can reproduce a series of random numbers,
i.e., reproduce a random fracture system by inputting the same initial seed in a later run.

Random generation of fracture centers. Depending upon the value of the input
parameter [igene], subroutine RECI‘XY or CIRCXY calls GGUBEFES once for each coordinate
of the fracture centef, to get two numbers a and b. The coordinates are then computed from a
and b using either:

X = FLOATI[INT(x, * 10" * a))/10" - Xg/2
Yo = FLOAT[INT(y, * 10° * b))/10" - y,/2

in the case of a rectangular generation region, or

X = FLOAT[INT(2 - rg - 10" * (a — 0.5))/10"



-10 -

y. = FLOAT[INT(2 - rg - 10" * (b - 0.5)))/10"
in the case of a circular generation region. In the laﬁer case, a pair (a; b) is used only if
a?+ b2 <025
otherwise, a and b are discarded and GGUBFS is called again twice to. get a new pair. In the
equations above, n is the number of décimﬂ places in the coordinate [itole], x, is the length of
the generation region in the x direction [xgene}, y, is the length of the generation region in the
y direction [ygene], rg is the radius of the genefation region [rgene], and d [dseed] is a double
precision dummy variable ihitially equal to the input or generated seed then reset by GGUBFS.
INT and FLOAT are intrinsic library funcfions which convert a real number to an integer by
truncation and an intégef fo a real nurr'ibér; respectively. Truncating coordinates to n decimal‘

places limits the minimum distance between fracture centers to the value 10™.
Raﬁdom Generation of Fracture Characteristics
Normal distribution. In subroutine NORMAD, the sum Sy is calculated by calling
GGUBFS iwenty-ﬁve times and accumulating the sum,

25
SN= Z I 24

n=1

where r, equals the value returmned by a call to GGUBFS, r, = GGUBFS(d). As shown by
Hammersly and Hanscomb (1964), Sy is distributed normally with an expected value of 25/2

and a variance of 12/25; therefore,

si=yB -2 | @5)
is distributed normally with expected value O and variance 1. If u and ¢ are the expected value
and standéfd deviation supplied by the user ([ev] and [sd]) then
x= oSy +HL - - (2-6)
is distributed normally, N ( p. , 6 ) with the specified parameters. (Note that in this equation, x
doeé not refer to a point éoordinate.)
Logwrmal distribution. If Sy and x are defined as in the pfeviqus section, then

SI:} is distributed N(0,1), and x is distributed N(u,0), and y = exp(x) is distributed lognormally.
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In terms of the parameters p and ¢ of the normal distribution for x, the mean o and variance
B? of the lognormal distribution are

o = exp(l)exp(c>/2)

and

B? = exp(c™2m)[exp(c?) - 1]. @-7)
Since the user will specify o and B, it is necessary to solve for i and o in terms of these vari-

ables: -

p.=21noc—%ln([32+oc2), (2-8)

6 =Vin (B? + 0®-2 In c.
Therefore, subroutine LOGNOD can calculate y from

y=exp@Sy+ W), @9

where W and o are defined above and o and P are specified by the user ([ev] and [sd]).

Exponential distribution. In subroutine EXPOND, M is the expected value given by

the user [ev] and -
x=pIn(l-r1) (2-10)
is distributed exponentially, where r = GGUBFS(d).

Normal distribution correlating two variables. Subroutine NORMD1 generates ran-
dom variables, x, distributed normally whére the expected value, |, is proportional to the loga-
rithm of another parameter, x; or to the parameter itself. This correlation may be used to com-
pute fracture aperture as a function of fracture length. SI:} is defined as before (Equation 2-5)
and the standard deviation, ¢ , is supplied by the user as [sd]. The user also supplies the y-
intercept and the slopé ([ycept] and [slope]) of a linear relationship between mean values of the

variable x, and given values of the logarithm of x,. The expected value of x, u is computed,

WU = ycept + slope*logo (x;) - 2-11)
and x is computed as before, (Equation 2-6).

Uniform distribution. Subroutine UNIFOD generates random variables, a;, distri-
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buted uniformly over a given range, ainf to asup, such that: .
a; = (asup — ainf)*GGUBFS(dseed) + ainf (2-12)
Additional distributions. The fracture generation code can easily be modified ‘to
include additional distribution functions that are found to be appropriate for any of the fraéture

characteristics.

2.1.2 Equatibns of Fracture Lines

The coefficients of thp. équation of the_ line in which a fracture l.iesl are computed by sub-
routine EQLINE from the fracture’s orientation and the coordinates of the fracture’s centcf.
The equation of a line is ax + by + ¢ = 0, where a = -sin(orie); b = cos(orie) and ¢ = - b *' yC
- a* xc are fhe coefficients of. the line with a given orientation [orie] and passing through the

fracture center of coordinates (xc,yc).

2.1.3 Truncation at Boundary

Fractures extending beyond the generation region are truncated at the boundary by_ the
subroutine LIMIT. If a fracture is truncated the coordinates of the end points and the length of
the fracture are recalculated. The fractures lying inside the generation region are used for sta-

tistical calculations and to determine the flow for a given study region.

2.1.4 Statistical Calculations

At the end of the generation stage simple statistical calculations are performed. This task
is done by the’"subroutine PFS which calculates and prints the fracture statistics elements ([sd]
and [ev]) for orientation, length and aperture in order to compare the generated fracture system
with the input parémeters provided by the user.

These statistics are computed two other times in the program, when the fracture network

is altered.
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2.2 Fracture System in the Flow Region

The flow region, which is the part of the fracfure network to be analyzed, is included in
the generation region and only fractures within this region are considered for input to the fluid
flow model. For one random generation of fractures, several flow regions can be specified.
They will be processed sequentially, and a finite-element mesh will be built for each of them.
Fractures extending beyond the ﬂowvregion are truncated at the boundary and those lying
entirely outside the region are discarded. Intersections between fractures and flow region boun-
dary lines are identified at this time. These intersection points, called boundai'y nodes, will be

assigned fixed head or fixed flux in subroutine WRENUM.

2.2.1 Flow Region

The flow region is either defined by a rectangle centered at the origin of the generation
region ([igene] = 0), or defined by a eireular outer boundary and a circular innerhole ([igene] =
1\). The dimensiens, [xmesh], [ymesh], and the orientation angle 8 [theta] of the rectangle, or
the fadius [rmesh] of the outer boundary and the radius [rhole] and position [xhole, yhole] of
the hole are ihput parameters read from FMG.INP. They must be such that the resulting region
lies completely within the generation region. The next step is to determine which fractures of

the primary fracture system lie within the flow region.

2.2.2 Fractures in Flow Region - Rectangular Case

Subroutine RLIMIT truncates the fractures intersecting the rectangular flow region boun-
daries and discards those falling combletely outside of it. If a certain fracture is truncated, the
subroutine RLIMIT w111 recalculate the coordinates of the end pomts and the length of the
truncated fracture. The mformatnon thus obtained about fractures falling within the flow region

will be stored and used to determine the flow mesh.

We mentioned that the flow region is centered in the generation region. Then the equa-

tions of the boundary lines will be:

Ax+ByxC=0
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Bx—-AyxD=0
where C = yméshfz and D = )_;meshﬂ.‘

Using the equation of the line that passes through each fracture or “‘fracture line’’, we
then determine its intersection with the four lines that lie along the flow region boundaries.
Using the coordinates of the first endpoint of the fracture, the two or four intersections are
parametcrizéd using the parameter t [t(4)] such that:

t = 0 at the first endppint of the fracture

t = length of the fractﬁre at the other endpoint
~ The number of intersections, either 2 or 4, is stored in vaﬁable [nt]. From Figure 2.1, one can

see that the part of the fracture _thaf fallé ihside the flow regioh has to lie between tﬁe two mid-
dle intersections. 'er array [t] is ordered. Then in order to determine if the fracture line
passes through thé ﬁow region, the first. two values in the ordered [t] array are considered. If
they correspond to two adjacent sides, then the fracture line passes through the flow region. If
they correspond to two opposite sides, then the fracture line does not intersect the flow region
(Figure 2.2), excépt in the special case of the fracture being parallel to boundaries. In this
case, the fracture is discarded only if its distance to the center is greater than the relevant flow
region size [xmesh]/2 or [ymesh]/2 (Figure 2.3). Since the sides bf the flow region are num-
bered consecutively, the sum of the numbers of two adjacent sides is odd, whereas the sum .of
the number of t\;vd opposite sides is even. | The side numbers for each intersection are stored in
_ the array [is(4)]. So we want to keep all fracture lines with four intersections (i.e. non-parallel
to a side) and an odd sum is(1) + is(2), and all fracture lines with two intersections (i.e. paral-
lel to a side). This is achieved by keeping only fracture lines for which the sum [is(1) + is(2)
smplisodd.
At this point we have determined if a fracture line passes through the flow région. “We
also know which segment of the fracture line is in the flow region. It is the segment t1-12,
with t1 = [t(1)] and 2 = [((2)] when [nt] = 2, and with t1 = [t(2)] and 2 = [t(3)] when [nt] =

4. We must now determine which part of the fracture overlaps this segment. If all the fracture
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Figure 2.1. Part of a fracture line inside the flow region.
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&

Figure 2.2. Checking side numbers to determine if a fracture line passes through the flow region.
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Figure 2.3. Discarding fracture lines which are parallel to the boundaries.
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is inSide the segment, we keep it. If only part of the fracture is inside the segment, we trun-
cate this fracture. Finally, if the fracture and the ségment do not overlap, we discard the frac-
ture. If t1 > fracture length or t2 < O (Figure 2.4) the fracture is outside the flow region. Oth-
erwise, the fracture is kept, and truncated if needed (Figure 2.5). The new fracture information

is stored in array [frac].

2.2.3 Fractures In Flow Region - Circular Case

Subroutine CLIMIT truncates the fractures intersécu'ng the circular flow region boun-
daries and discards those falling coinpletely outside of it. If a certain fra(_:ture is truncated, the
subroutine CLIMIT will recalculate the coordinates of its endpoints- and the length of the trun-
cated fracture;~ A fracture may al.so,' be split in two parts by the inner hole. In this case, two
fractures with the proper endpoints and lengﬂxs are created from the generated one. The infor'-v
mation thus obtained about fractures falling within thé flow region is stored and used to deter-
mine the flow mesh. A do loop over the generated fractures is performed. After its proper
endpoints and length have been recomputed to account for eventual truncation, the characteris-
tics of a fracture are rewritten in the same array [frac]. However, the identification number of
the fracture (i.e. its position in the array [frac]) may changé after it has been examined,
because whenever a fracture must be discarded, the counter for writing characteristics into

[frac] is not incremented, so that the next fracture will be written over it in the array.
First the fracture is truncated at the perimeter of the outer flow region circle. Since the
origin of the coordinates is its center, the equation of the flow regioh circle is:
X2 +y*=12

where 1, [rmesh] -is the radius of the circle. We parameterize the line supporting the fracture

by the i'elative distance t from the first eﬁdpoint x.y):

t = 0 at the first endpoint (x;, y;)
t = 1 at the second endpoint (X,, ¥,)

then, if alen is the length of the fracture, the distances t1 and 2 for the intersections of the line
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Figure 2.4. Using array [t] to discard fractures which fall outside the flow regiori.
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Figure 2.5. Truncation of fractures which fall both inside and outside the flow region.
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with the circle are the solutions of:
alen?t® + 2[x; (X2 —x)+yi (Y2 -yl t+ x,2+ y12— r,f, =0 (2-13)

The fracture is at least partly inside the flow region if

e  the discriminant of equﬁtion 2-13 is positive (i.e. the fracture line cuts the flow

regioh) | | |

e tlisless than 1,

° 2 is more than 0.‘
Otherwise it is discarded.

The first endpoint is truncated if t1 is greater than zero. The second endpoint is truncated
if t2 is smaller than one. The .vall;xes of Xy, ¥1. X2, ¥, and alen aré modified accordingly if
necessary. - |

Next the fractqre is truncated or split at the inner circle, or ‘*hole”’, with radius rh(rhole],

and center (X, y) [xhole, yhole]. The coordinates of the endpoints are translated _(

XX; = X; — xh

YY1=Y1-Yh
XXy = X3 — xh
yy2 =Yy, - yh

Then the equation .for the intersection(s) is exactly similaf to equatibn 2-13:
alen®t® + 2(xx, (XX, —XXy) + Yy (yy2— yyiyt + Xx2+yyZ — th® = 0 (2-14)
This time we want to discard anything inside the circle.
S o a fracture will be kept unchanged at this step if:

e the discriminant of equation 2-14 is negative (i.e. the fracture line does not cut

the éircle)
e t1 is more than i

e t2isless than 0
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A fractnre will be discarded if tl is less than zero and t2 is more than one (fracture totally
included in the hole). If either t1 is more than zem:or t2 is less than one, then the second end-
point or the first endpoint respectively is truncated, so the endpoint cgordinates and length are
updated. If both t1 and 2 are between zeto and one, then the fracture must be split in two
fractures. This is done by simply assigning to the current fracture number the first part of the
fracture, and then by considering the second part of the same fracture, instead of the next frac-
ture, when incrementing the fracture number. This requires that the number of the next gen-
erated fracture to be processed be higher than the number of the current truncated fracture plus
one. This may'be true because some previous fractures have been discarded. If it is not true,
subroutine MOVE is 'call'ed, and trénslate's all the characteristics of the fractures not yet studied
down in the array [frac]. . The amount (idif] by which the charaeteﬁstics are translated down is
determined by [idit] = tniﬁrtmm ([nfrac)/10 + 1, [maxfrc] - [nfrac]), where [nﬁac] is the

number of fractures, and [maxfrc] is the size of the array (frac].

2.2.4 Statistical Calculations

After eliminating all fractures outside the flow region, and truncating all those which
intersect the flow region boundaries, the same statistics as described in Section 2.1.4 are com-
puted and printed by subroutine PFS. Comparison of these values with those computed for the

generation region indicates whether the flow region is statistically representative.

- 2.2.5 Connections between Sides

When studying the percolation properties of networks, one important patameter is the per-
colation threshold. ThlS is the “minimum" set of statistical properties for which a connected
network of vinﬁnite size (inﬁnite cluster) exists. Below the threshold; only ﬁnite-size clusters of
fractures exist. In order to compute this threshold, we generate large networks and simply
check if there is a connection between sides 1 an 3 (rectangle), or between the center hole and
the outer boundary (circle). The ability to check connections this .way without outputting a

finite element network has been added to the program. This is performed by subroutine CON-



- -23-
NEC if the flag [icont] is set to § in the input deck:

2.3 Fracture System to be Used in Flow Model

In order to calculate flow through the system, all fracture intersections must be located.
Intersections between fractures and boundary lines have already been determined. Therefore,
the next step is to locate all intersections bgtween fractures (jntemal nodes). This is done
sequentially, starting with fractures intersecting the boundaries, then fractures intersectihg these
ones, and so on, until no new intersection is found. In this way, all the fractures from. which
there exists no path to any boundary, i.e. isolated clusters, are automatically diéc‘arded. In the
circular case, the search for intersections is initialized with only the fractures intersecting the
hole. In this 'way, only fractures linkéd to the hole will be kept. They are the only ones hav-
ing an effect when modelling a well test. For steady state problems, flow in a frécture can
only occur between intersections. Thefefore, only those fractures containing two or rhore nodes
méy' conduct flow. To simplify the flow problem, all fractures containing leés than two nodes
are idénu'ﬁed as nonconducting and eliminated from the cataiogue. The elimination 6f dead-
ends and isolated clusters can both be overridden to produce méshes for transient or fAracture‘-

matrix flow.

2.3.1 Calculation of Fracture Intersections

’I"he fracture mesh is built by subroutine CONNEC from the rectangular boundaries to the
inside of the flow region, or from the inner hole to the outside, level by level. Intersections of
all the fractures intersecting the boundaries (fractures in level 1) with all the fractures, either in
level 1 or not, are séarched. All the fractures not in level one but which intersect a fracture in
level one ére putlin lével vtwo,Aand are then screened for imersections, and so on. Fracture
numbers are rearrangéd level by level during the pfocess, by permutating elemehts of the [iold]
reference array pointing from rearrénged numbers to original numbers. When z; fracture [ifrac]
is studied, only fractures with numbers biggér than [ifrac] are Screened for intersections. If the

fractures intersect, the coordinates of the point of intersection are determined.
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The following intersection information is stored: the identification numbers of intersecting
fractures [ifrac(2,mnod)]; the distance from the first end point of the respective fracture
[tint(2,mnod)]; the node numbers for each fracture ‘[knode(mkey)]; the key to array

[knode(mkey)] for each fracture [kut(mfrc)].

2.3.2 Elimination of Nonconducting Fractures

Depending on the value of the flag [ikeep] input by the user, non-conducting fractures are
discarded or kept in. If [ikeep] = O, simple dead-ends are discarded as well as isolated clus-
ters. If [ikeep] = 1, dead-ends are kept but isolated clusters are still discarded. If [ikeep] = 2,

then both dead-ends and isolated clusters are kept.

Discarding simple dead-ends [ikeep] = 0

Fractures with only one intersection are dead-ends for steady state flow. So at each level,

once all the intersections of a given fracture have been found, if there is only one intersection,

the fracture may be eliminated. Note that by removing the fracture, we are removing one
intersection from a fracture in the previous level.  This other fracture may then be left with

only one intersection, and so on. The program goes back through the mesh deleting fractures

until it finds a fracture left with two or more intersections. Note that this fails to get rid of

dead-ends containing loops. These complex dead-ends will be discarded by RENUM.

Keeping isolated clusters [ikeep] = 2

Isolated clusters are discarded ‘‘by default’® since the search for intersections is started at
the boundaries and follows the connections. If [ikeep] = 2, when the search initiated at the
boundaries is finished, the number of fractures already screened is tested against the total
numbef of fractures in the flow region. lI.f they are not equal, a fracture nof yet included is just
put arbitrarily in the next levél, and the search is resumed starting from that fracture. The pro-

cess is then repeated until all the fractures in the flow region have been searched.
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2.3.3 Boundary Conditions for Rectangular Networks

The rectangular fracture networks produced by FMG are primarily used to compute direc-

tional conductivitics. Such conductivities in several directions are then used to compute an

equivalent continuous medium conductivity tensor, and to check if the continuum hypothesis
holds by deriving a normalized mean square error. This is performed by program ELLFMG .
(Chapter 5). In a heterogeneous medium sueh as fractured rock, conductivity must be meas-
ured in the direction of the gradient. The average gradient can be constant in magnitude and
direction throughout a heterogeneous region in steady flow if the region behaves like a homo-
geneous porous medium. The direction of flow, however, is controlled by the direction of the
fractures. Since the dikction of the gfadieht can be controlled, measuring permeability in the

direction of the gradient is much easier than measuring in the direction of flow.

The boundary conditions necessary to produce a constant gradient in a rectangular aniso-
tropic flow region are illustrated in Figure 2-6. They consist of two constant-head boundaries
(6, and ¢4) and two boundaries with the same linear variation in head from ¢1 =101t0¢4=0. '

Conduct1v1ty is measured in the dlrectmn perpendlcular to sides 2 and 4.

The linearly varying boundary conditions in sides 1 and 3 are necessary because, in gen-
eral, the medium in the flow region is anisotropic. Without these boundaries, the lines of con-
stant head would‘be distorted near sides 2 and 4 as shown in Figure 2-7. When the isopoten-
tials are distorted, only part of the flow region can experience a constant gradient. In an arbi-
trary heterogeneous system of unknown anisotropy, it is impossible to determine which part of
the system is experiencing a constant gradient and which part is not. Therefore when no flow
boundaries are used, it is not always vpossible to measure only that part of the flux which is due

to a known constant gradient.

The boundary conditions used in Figure 2-6 insure that the whole fracture system is
equally stressed by the hydraulic gradient. Under these boundary conditions, the existence of a
constant gradient in the flow region depends only on how well the fracture system is mtercon-

nected. If the system is well connected, it will behave like a porous medium and have a
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Figure 2.6. Boundary conditions applied to fracture models for permeability measurement.
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Figure 2.7. Distortion of isopotentials in an anisotropic medium with *‘no flow’’ boundaries.
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constant gradient.

In order to accommodate directional conductivity studies, FMG can handle both constant
and linearly varying imposed head boundary conditions. An option is also provided tb produce
constant flux boundary conditions. Note that if such conditions are used, the processing will
end with program LINEL (Chapter 4), and program ELLFMG will not be able to compute an

equivalent porous medium conductivity tensor.

2.3.4 Boundary Conditions for Circular Networks

The circular networks produced by FMG are primarily used to simulate well-tests. A
constant flux or constant head is imposed on the inner hole representing the well, and constant
head conditions are impoSed at the‘pe'rimeter of the flow region. This reproduces the condi-

tions during a well test.

2.3.5. Finite Element Mesh

Subroutine WRENUM reads the boundary conditions specifications for a given flow
region and computes the imposed head at each boundary intersection if a linearly varying

imposed head is specified. The following specifications for each node are then output:
e the identification number of the node

° a code identifying if the node- is internal, or a boundary with imposed head, or a

boundary with imposed flux (0, 1, -1)
e the side number for a boundary node (1, 2, 3, 4 if rectangular; 1,3 if circular)
e the coordinates of the node
o the value of the imposed head_(s) or flux(es) at the node if needed
Finally, the element catalogue is printed, including:
'. the element identification number

° the numbers of the two nodes at the endpoints of the element
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the transmissivity of the element
the length of the element

the identification number for the fracture on which the element lies (this is printed

only for reference and not used by the next program).
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3.0 PROGRAM RENUM

The program RENUM was designed to better use the memory space and reduce the com-
puting time necessary in the s_imulation process of the hydraulic behavior of fractured rock. It
simplifies fracture networks for a more efficient computation. The code merges the nodes
which are too close to each other, removes all dead-end clﬁsters which do not conduct fluid
and renumbers the mesh in an efficient way. RENUM is a part of a chain of programs

developed at LBL, and can treat the outplit 6f FMG or CHANGE (Billaux and Long, 1988).

In two dimensions (Figure 3.1), fractures are assumed to be line segments (Long, 1983),
and are generated by FMG as explained in Chapter 2. The chain of programs outlined in Fig-
ure 1.1 also includes three-dimensional codes. FMG3D generates random disc (Gihhour et al.,
1986) networks. The discs can be used by program CHANGE (Billaux and Long, 1988) as
the supports on which random channéls are generated (Figure 3.2). The channels generated on
the discs constitute a three-dimensional network of line elements. The problem of computing
flow and transport in such networks is numerically exactly the same as computing the flow in
two-dimensional line-segment networks (however the number of nodes and elements involved
may vary considerably). RENUM, initially built to process two-dimensional networks, can

therefore also handle three-dimensional channel networks generated by CHANGE.

In steady state, the flow problem is fully defined éfter the conditions on the boundaries
have been given. .'We define the nodés as the intersections between line elements or between a
line element and a boundafy. Solving for the flow in each line element and the potential head
at éach node amounts to solving a system of linear equations, the number of unkndwns being

the number of nodes.
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Figure 3.1. Two-dimensional fracture mesh. (aj fractures generated pseudo-randomly,
(b) same mesh with simple dead-ends removed.
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Figure 3.2. Three-dimensional channelized fracture mesh. (a) random discs and channels,

(b) channels only.
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31 Mei'ging Endpoints of Short Elements

Due to the fact that large differences between.the leng_ths of the elements can lead to an
ill posed problem (the matrix to be solved is not positive definite within the precision of the
computer), very short elements are discarded and their ends are merged. This is done in sub-
routine MERGE.

In the discarding process we use the three arrays inodé(2,i), inew(i) and ibs(2,i). The
program loops over the elements and compares their endpoints. If the coordinates of these two
nodes are equal then one of them is discarded as follows:

1. If thé two nodes i and j that form the element are both _boundary'nodes, node i is

discarded by setting inew(i) = j. In this way, any later reference to node i will be -
’ pc;inted ihstead to node j.
2. If one node i is a boundary node and the other j is not, node j is discarded by set-
ting inew(j) = i.
3. If both nodes i and j are interior, then node j is discarded (inew(j) = i).
In this way, né connection to the boundaries is cut.

When an inner boundary condition with imposed flux is specified, all the nodes on this
boundary are merged. In this way, the inner hole is modelled as an infinite permeability

medium. -

- 3.2 Discarding Dead-ends

Some definitions from graph theory are useful in describing the algorithm used to discard
dead-ends (Billaux and Fuller, 1988). A connected graph is one in which any two nodes are
connected to each other by at least one path. In our case, this path can be through fraCtures or
boundary lines or both. By extension, a biconnected graph is one in which any two nodes are
connected to each other by at least two totally distinct paths. In a given graph, a biconnected
component is a maximum biconnected sub-graph, i.e., a part of the graph as big as possible

-while still being biconnected. It is connected to the rest of the graph by only one node, which
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is then called an articulation point.

We want to keep any node which is connected to the boundaries by at least two distinct
paths as this node will be on a connected flow path. Selecting the ‘‘active mesh’’ then
amounts to selecting all biconnected .components containing at least two boundary points. The
algorithm used in subroutine PATHS identifies and lumps together all the biconnected com-
ponents including two boundary nodes, and does not attempt to distinguish between the other
ones, thus saving some time. To achieve this, a breadth-first tree search is performed starting
from all boundary nodes as' initial points, as explained below. Figure 3.3 shows a simple mesh

used to illustrate the description of the algorithm.

The breadth-first search is a simple way of examining once every node connected to the
initial points; It is perfonhed,iteratively by scanning the nodes in successive levels defined as
follows. Levél one contains the initial nodes. Level two contains all nodes connected to level
one by a line element. Level n + 1 contains all the nodes connected to a node in level n by a
line element and which are not already in level n or n - 1. Note that a node connected to a
node in level n by a line element cahnot be in a level lower than n-1. Otherwise the node in

level n would have to be in a lower level. .

The process is initialized by putting in level one all the initial nodes. Then a loop over
the leyels is started. For any level, each node in the level is studied to find all the nodes con-
nected to it. If a new node is encountered, it is put in the next level. At that time, we call the
node we are examining the ‘‘study node.”” Once all the nodes of a given level have been
screened, the loop over the levels is incremented and screening of the nodes in the next level
begins. This goes on until at the end of the screening of a level the next level ié empty. Dur-
ing the search, the nqdes are nﬁmbered sequentially as they are eﬁcountered. In this process
we do not encounter any nodes which are isolated from the boundary, therefore, these nodes

are automatically not included in the catalogue.

The boundary nodes are the initial points or ‘‘sources”’ for the first search. A sufficient

condition for any node to be active is to be reached by two branches of the search originated
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Figure 3.3. Simple mesh with dead-end highlighted.
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from different sources. For any node we encounter, we remember on which branch it is by
- recording the source from which this branch originated. Therefore, the following rules are fol-
lowed when studying a given node during the search and looking for all nodes connected to it

by a line element:

e If a new node is encountered, we record the number of its source. This number is
in fact the source number of the current siudy node from which we have just found
the new node. One exception is the case when the study node is a source node. In
this case the sourée of the new node wxll be the study node itself. The new node is

also added to the list of nodes in next level.

° If the node we encouﬁter haé been found earlier in the search, it already has a
source ni;mber_. We compare this source number with the number ns we would like
to.assign to it if the node was new. If they, are identical, both the study node and
the node we have encountered afe part of the same branch of the search tree and the
search goes on. On the contrary, if the two sources are different then we have

found two active nodes.

An active node is flagged by setting its source to zero. When this node is studiéd later in
the search, it will be considered as a source itself, so that its number will be the source number
of any new node we will find connected to it. To enablé an active node to act as a source, we
need to find that it is active before it becomes the study node. Since we study the nodes in the
order in which \;ve renumber them, this will be the case if its number is higher than the number

of the current study node. Once this is done, the search resumes.

Once the breadth-first search is terminated, we have completely renumbered the part of
the mesh connectéd to the boundaries (Figure 3.4). The numbering is such at this stage that
when considering any two nodes, the node with the lower number is either closer or as close to
thé boundaries as the node with the higher number. 'By closer, we mean that we need to pass
through less line glements to go from the Aboundan'es to the \pode. Wev’can now derive a

second sufficient condition for a node to be active. Consider a dead-end cluster (Figure 3.5).
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Figure 3.4. Mesh from Figure 3.3 at the end of the first search.
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Figure 3.5. Second sufficient condition. Respective positions of boundaries, articulation
points and dead-end cluster.
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We must pass through' its articulation point to reach the dead-end from the boundary. There-
fore the nodes in the. dead-end haQe iligher numbers than the articulation point. Reversing this
proposition, we find that-when we jump from one node to ahother along a line element, if the
| node number decreases, we cannot be entering a dead-end cluster. The second sufficient con-
dition is therefore, that a node is active if it is connected by a single line element to an active

node with a number higher than itself.

We use the above‘ sufﬁéientcondition to flag active paths, that is paths in which all the
nodes are actixe. Starting in sequence from each of the nodes flagged as active duﬁng the pre-
vious search, a restricted breadth-first search ‘is performed. When studying a given node,
instead of recording 511 tﬁe nodes éonnéctéd to it by a line element, we select only those with a
lower number. Becguse we stgrted from an active node, all the nodes we go through are active

and we flag them as such.

We may not be flagging all the active nodes in the mesh, since the condition we are
using is sufficient but not necessary. For example, in Figure 3.4, nodes 8, 11, 12, 15, 16 will
not be flagged. We thus will need io study again the part of the mesh which has not been
flagged as active yet. To initialize tﬁis next forward search we will need to know where there
are branches we did nbt select in the restricted search. So during this downward search, we
- 'make as initial node for the next search any node we encountered that is connected to a node
not flagged active and wiih a higher numBer. Figure 3.6 shows the example mesh at the end
of the first downward search. Node 9 qualified to be an initial poiht for the next forward search

because in is connected to mode 12. Node 6 qualified also because it is connected to Node 8.

Starting from the source nodes deﬁned during the downward search, we perform the same
forward search as before, bﬁt avbiding all nodes already known to be active. We renumber the
nodes we encounter in sequence, assign to them new sources, and flag more active nodes in
the same manner as before. The downward search is then performed starting from the newly
found active nodes only, and the process is repeated until all active nodes have been flagged

(Figure 3.7).
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Figure 3.6. Mesh from Figure 3.3 at the end of the first downward search.
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Figure 3.7. Mesh from Figure 3.3, second loop of searches. (a) forward search, XBL 879-10329
~ (b) downward search: only one source is left for the next forward search.
The algorithm stops, nodes 8 and 9 are discarded.
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“The process is stopped after a downward search if not more than one new source node

has been flagged. After a forward search it is stopped if no new active node has been flagged.
3.3 Node Renumbering and Output

3.3.1 Banded Matrices

The bandwidth of é matrix is the maximum of the difference between the numbers of two
nodes in the same row, plus one. For a symmetric matrix, only half of the matrix_is generally
sAtored‘, either the upper or the lower triangle bounded by the diagonal. So the hal‘f-bandwidth
is defined for a symmetric matrix as the maximum distance along any row between the diago-
nal and a non zero off diagonal term, plué oﬁe. Numerical algorithms for the solution of linear
systems take advan;age of a narrow bandwidth in various ways. The most common way is to
store onfy a numbef of terms equal to the bandwidth for each row of thé matrix, thus reducing
the storage requirements and the number of operations needed. If either a complete or an
incomplete Choleski decomposition is performed, only terms within the band are filled in (i.e.,
are changed fr_om'zero fo non zero). Thus the narrow bandwidth also drésticélly reduces the
sforage and computer time requirements. These solving procedures are discussed in more

detail in paragraph 4.2.

3.3.2 The Cuthill-McKee Algorithm

The alqum used to minimize the bandwidth was published by Cuthill and McKee
(1969). It consists of searching the network level by level as explained in Section 3.2 and
renumbering the nodes as they are reached. For example, in Figure 3.8a if node one is put in
level one, then level two consists of nodes (2 and 8), level 3 of nodes (3 and 6), and so on,
and the renumbering yields the node ﬁﬁtnben‘ng 'shown in Figure 3.8b. The matrix obtained
has a half bandwidth of 4 as compared to the matrix in Figure 3.8a which has a half bandwidth

of 8.

The search is initialized by putting all boundary nodes on side one in level one. Once all

nodes connected to side one have been screened, all boundary nodes on side two which have
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Figure 3.8. Node renumbering, after Robinson (1982).
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not yet been screened are put in the next level and the search is reinitialized. This goes on

until all sides have been exhausted (four sides in 2 dimensions or 6 sides in 3 dimensions).

Subroutine PLOT then writes plotfing files, linesnn.dat, with nn = 01, 02, 03 etc., for
each flow region studied. Then, the bandwidth is computed by PROUT, and this subroutine
prints the finite element network for use by programs LINEL (Chapter 4) or TRINET
(Karasaki, 1987).
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4.0 PROGRAM LINEL

LINEL computes the steady state flux through a mesh of line elements previously pro-

cessed by program RENUM. LINEL was first developed by Wilson (1970).

For a given set of boundary conditions, the‘head at each node and the flux in each ele-
ment are computed. The oﬁtput of the program consists of the sum of the fluxes through éaéh
side of the flow: regio_n. }

The pfogram can deal with two dimensional Iﬁesheé generated by FMG or with three
dimensional meshes-_ generated. by FMG3D-CHANGE (Gilmour et al., 1986; Billaux and Long,
1988). For two dimensional problems, study regions can be defined as an option. These are
smaller rectangular regions centered in the flow region. Whenever such regions are specified,

the flux through their boundaries and the average gradiént inside them are also computed.

4.1 Building the Linear System of Equations

Using Darcy’s law for each element and writing the conservation of mass at each node of
the network yield the system of linear equations that needs to be solved given the boundary

conditions.

4.1.1 Governing Equations

In each line element, Darcy’s law states that the flux through the element is proportional
to the gradient of charge in the element, the proportionality constant being the transmissivity of
the element. So given an element of léngm I; and transmissivity t;; joining to nodes i and j,

and given the charges h; and h; at nodes i and j, the flux Q;; from i to j is given by:

h; - h |
Qy=t; S—TJ)‘ @4.1)

At each internal node there is no creation of mass, except if the node is specified as a source.
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So for all i’s, we have:

2Qi=g 4-2)
where g; is the imposed flux at node i, wh;ch is zero for most or all internal nodes. The sum
is over all nodes j connected to node i by one line element. Note that this equation cannot be
written for imposed-head nodes, where some mass is effectively entering or leaving the mesh.

At these nodes, we simply write the identity between the head and the imposéd head.

4.1.2 Linear System
The linear system is obtained by si_mply'writing Equation 4-2 for all nodes, with the Q;s
written in terms of the k;’s using Equation 4-1. If the mesh has n nodes, the matrix will then

be of order n

Each line i of the linear system has the form:

Tin-xIn=q @3)
J )

where the summation on j’s is the same as in Equation 4.2.

If this system of equations is written:

: Ah=Db
then from Equation 4.3, the diagonal terms in A are

ti.
Ai=3 Ii
it
the off diagonal terms are:

4
A.. = — ——
. v lij

if an element ij exists; otherwise,

A;=0

and the b terms are:
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The above terms are complete if there are no imposed head boundary nodes. If a node k

has its head imposed, the line k of the system reduces to

[Z ﬁ] hy = [z 3| g, (4-4)
J

i I LY
where H, is the imposed head.
We can then rewrite Equation 4-3 separating the nodes into non-imposed head nodes and
imposed head nodes:

‘u

) 111

where node i is a non-imposed head node, the sum of j’s is over all non-imposed head nodes

b+ YK b - );—tih E—Hk—qi @-5)
¥ i i P

connected to node i by a line element, the sum in k’s is over all imposed-head nodes connected

to nqde i by a line element. Passing the fourth term in th_e left hand side (known term) to the

right, we obtain:

R 54

it i
The left hand s1de represents matrix A, and the right hand side is the b vector. So we obtam

by = q+z—Hk - 4-5)
k

the final expression for the terms of A and b:

e  diagonal terms in A:

. Ay Z . - (4-6)
5 1
where the sum in j’s is over all nodes j, either imposed head.or not, connected to

node i by a line element

e  off diagonal terms in A:

if an element ij exists and neither node i nor node j is an imposed-head node, then

e

j (4'7)

[
&

~ otherwise

A;j=0 - (4-8)
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° terms in b:

if node i is a non-imposed head node

bi =q+ E 4-9)

k
where the sum in k’s is over all imposed-head nodes connected to node i by a line

i
Ly

clement.
If node k is an imposed head node,

v &
bkalkj

where the sum in j’s is over all nodes connected to node k by a line element.

(4-10)

413 Implementation

Subroutine CPHI builds A and b A loop is performed over all the line elements in the
network. For each of them, .the numbers of the nodes at the extremities are retrieved, the right
terms in the diagonal of A are added, then depending on the status of the two nodes (either
imposed head or not), the proper terms are added into b or put off the diagonal into A. Note "
that several (ui) to three) b vectors can be built at the same time, to compute, for example, flow

in a given mesh under gradients in several different directions.

In order to save computing time when solving the linear system, when filling matrix A
and vector b, the lines of A and b corresponding to imposed-head nodes are switched to the -
bottom of the tables. Then the order of the matrix passed to the linear solver will be vonly the
number of nodes where head is not imposed. In this way, the program avoids solving the lines

of the system where it reduces to an identity.

For two-dimensional networks, the default number of boundary conditions is two. The
boundary conditions used are: 1) the conditions imposed by the users, and 2) the same condi-
tions rotated 90° (Figure 4.1).‘ In this way, two different directional permeabilities are found at
the same time in the process of computing a porous medium equivalent tensor (see Chapter 5).

This default setup is overridden whenever an imposed flux boundary node is present in the
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Figure 4.1. Two sets of boundary conditions for directional permeability.
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mesh.

For three-dimensional networks, the number of differing sets of boundary conditions is

input by the user, and each set of boundary conditions is fully defined .by the user.

The way matrix A is stored in the computer depends on the solver used later. The solver

requires A to be stored in banded fashion.

42 Solving the Linear Systeml |

A system of equatioh’s rcﬁresenting flow in a line element network has several interesting
properties. The matrix A is sMetﬁc positive definite, and is also generally sparse with a
narrow bandwidth. The symmetry fol'lb‘ws' directly from the expression for the off-diagonal
terms in A. The fact that A is botﬁ positive and definite stems from the relationship between
the off-diagonal an(i diagbﬁal ‘tenns in every line. From the construction of A (Equations 4-6,
4-7 and 4-8), it follows that:

Aij <0
for all-i and for all j such that element ij exists.

Aji=-3 Ay
#
if no node j is an imposed head node;
Ay > -3 4
. A
if at least one node j is an imposed-head node.
Simple algebra then can prove a sufficient condition forApositive definiteness which is that
for any vector x,
S xXAx>0.
Recall that an off-diagonal element of matrix A, A;; is non-zero only if a line element joins the
two nodes i and j. This implies that on a given line i of A, there will be as many off-diagonal
non zeros as there are line elements having node i as an endpoint. Experience shows that

almost all nodes are the endpoints of two to four line elements. A node can be the endpoint of
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more than four elements in two instances only. - 1) If three fractures intersect at the same point
or at almost the same point, program RENUM merges the several resulting nodes into one. 2)
All the nodes intersecting a given imposed flux hole (i.e., a well) are also shrunk into one by
RENUM. So the number of non-zeros on any given line of A averages less than five (four
off-diagonals plus one diagonal). Considering that networks of 10,000 nodes are not uncom-
mon, the matrix A for such networks is made of 99.95% zeros and 0.05% non zeros. In fact,
the number of non-zero off-diagonals we need to store can be cut in half because of the sym-
metry. |

The narrow bandwndth of the system is discussed in Chapter 2. Note that even for a

sparse system, renumbenng the nodes to minimize the bandwidth is efﬁc1ent and reduces

overall computer time.

The solver SYMSOL is a fortran subroutine that solves the linear system of equaitions
with A stored in lower triangular banded form. SYMSOL uses the lower triangle decomposi- :
tion method to solve the system of equations. This solver is nnplemented in FORTRAN-77,

o] 1t is easily portable to any computer

4.3 Computing Fluxes

. The solution of the linear system is an array containing the hydraulic head at each node
in the network. The flux entering the system at each imposed head boundary node is com-

. puted. The sum of the fluxes through each side of the flow region is then computed and

printed. If required, the head and flux at the boundaries of a smaller study region are. also ..

computed and printed.

4.3.1. Flow Region

Once the head at each node is known, it is a simple-matter to compute the flux through
any element of the network, by usihg Equation 4-1. Subroutine CUNK loops over all the ele-
ments. When an endpoint i of an element is found to be an imposed-head node, the flux leav-

ing node i through the element is computed.
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Subroutine PINFO then prints the header for the output file, and optionally all the node

and element characteristics together with heads at nodes and velocities in elements.

The fluxes leaving all the nodes through each boundary side are summed up by subrou-
tine SFLUX. These fluxes are output, as well as the inverse of their square root for two-

dimensional cases, to be used by program ELLFMG (Chapter 5).

Also, if flux has been imposed at any node, the head at this node is printed. The average
number of fractures per unit length (2-D) or area (3-D) intersecting each side of the flow

region is also computed and printed.

4.3.2 Study Regions

For computing equivalent poroﬁs medium permeabilities in the two-dimensional case, the
boundary conditioné thaf are' imposed (see Section 2.3.3) are likely to cause a consistent
overéstimation of the permeability; because flow may be forced through fractures or fracture
clusters that only transect the comer of the region. The importance of this effect decreases as
the scale of measurement is increased. This problem is handled by using ‘‘study regions’’
(Figure 4.2). |

A study region is centrally located inside the flow region, and a border region of width A
- is left between the study region and the boundéries of the flow region. The boundary condi-
tions afe still applied to the ﬁow region sides, but fluxes are examined at the boundaries of the
study region. For a large enough A, the border effect is all but eliminated. But another
difﬁculty then arises in defining the gradienf J over the study region. The gradient over the
flow region is clearly defined by the applied boundary conditions. The gradient J; over the
study rggion, howévef, can be defined in one of two ways. We can take J; equal to J operat-
ing on the flow region, which we call the ‘‘global gradient’’. Alternatively we can calculate a
local gradient. We do this ny combuting the head at the intersection between any fracture and
the boundaries of the study mgion. By taking the difference between the average heads on the

outflow and inflow sides, we are able to find the gradient which would theoretically be meas-
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Figure 4.2. A 70 m by 70 m flow region with six nested study regions.
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ured in situ by monitoring heads at the boundary of the regibn. Note that the global and local

gradients should be identical if the medium behaves as a continuum.

Subroutine STUDY optionally performs study region cbmputations if such regions have
been specified. The intersection points between fractures and study region boundaries are
determined. The head and flux at these points are computed using the known heads at all the
nodes in the network. The appropriate sums "of fluxes and averages of heads are then com-
‘puted, and peﬁneabilities computed using local or global gradients are output, as chosen by the

user. Note that_ several (up. to '20) study regions can be specified for the same run.

The interéections between each spudy -_reg'ion and the elements of the network are found
using part of:- the algorithm described in Section 1.2.2 for truncating fractures lying pénially
outside the flow re"gion. " When an intersection is found, the flux in thé element is computed
using Eciuaﬁdn 4-1. The head at thé iﬁtersecﬁon is also comput?d using the assumption that
the head varies linearly along any element. If the endpoints of the element are nodes i and j,
and the intersection is at a relative distance t from node i (Figure 4.3), with t = 0 at node i and

= 1 at node j, then: |
- h=h+ihy-hy) | (4-11)
where h is the head at the intersection, h; is the known head at node i and h; is the known head
at node j. Then the head and flux are added to the sum of heads and the sum of fluxes stored
for the particular side of the study region.. The squares of the heads are also added up for each

side in order to compute the standard deviation of heads.

Once all the elements have been screened, the average and standard deviation of heads on
each side of all sfudy regions are cdmpu'ted and printed. If needed the local gradient is com-
puted, és the ratio between the differenéé in average heads from the inflow to the outflow side,
and thé size of the study region. Using the sum of the fluxes on the outflow side and inflow
side, and either the global gradient or the local gradient, the average permeability is computed

and printed in a file to be used as input for program ELLFMG.
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Figure 4.3. Notations for computing the head at study region boundaries.
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5.0 PROGRAM ELLFMG

As mentioned before, the program ELLFMG is one of the links in a chain of programs,
which consists of FMG, RENUM, LINEL, ELLFMG, DIMES and ELLP, built to anaiyze fluid
flow through a  two-dimensional fracture network. The input to program ELLFMG is a list of
directional permeabilities thained by LINEL. This list is built using the ability of the pro-
grams FMG, RENUM and LINEL to process several flow regions in one run, for one given set
of generated fractures. It can also be 4bﬁi1t by appending results from different runs, making
sure that the same pseudo-random generation process is repeated for each run. An example of
several flow vregions for the same mesh is shown in Figure 5.1. For each of them, flow is
computed under a gradient from side 2 to side 4. Note that since LINEL is able to compute
flow under both a gradient from side 2 to side 4 and a gradient from side 3 to side 1 at the
same time (Chapter 4), Figure 5.1g (90° rotation) corresponds to sblving the same matrix as
FigureVS.la (0° rotation). Identically, pairs of rotations (15° and 105°), (30° and 120°), (45°
and 135°), (60° and 150°), (75° and 165°), each comspoﬁd to solving one linear system.
From the obtained values for the directional permeability in several direction, Kg(oc), ELLFMG
determines the three components of the bermeability tensor, Kj;, which fits best these results.
Then the principal values (eigen values) and' principal axes (eigen vectors) of the penﬁeability
tensor are computed. ELLFMG also produces a quantitative measure of the difference between

the measured values; Kg(a0), and the best-fit values.

5.1 Permeability Ellipse and Permeability Distributions
For an ideal anisotropic homogeneous porous medium the directional permeability, K,

measured in the direction' of the gradient (o), is defined by the following equation:

qi n; = KpJ (5-1)
where n; is a unit. vector in the direction of the gradient, J is the magnitude of the gradient, and
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Figure 5.1. Flow regions with various orientations for directional permeability studies.
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q; is the specific flux. Solving Darcy’s law for g; and substituting this into 5-1 gives

KlJJ _ln1 = KgJ ’ (5-2)
and since J/J = n; we have
K, =Kjnn;, (5-3)
or
K, = Kyjcos2a + 2K;pc0s o sinat + Kzzsirfa, (5-4)

where n; and n, are direction cosines and n; = cos o, n, = sin .

If 1WK; is plotted in the direction o (the direction of the gradient), then

n; = cos a = xVK, ar_nd n, = sin o = yVK,. Equation 5-4 becomes

Ky = K1x’Ky + 2 KipxyK; + Ky Ky, ‘ | (5-5)
1 =K ;X% + 2K 5xy + Kpy?, (5-6)

. 11X .
1 = KjxiX; where x; = vl : ’ (5-7)

Equation 5-7 is the quadratic form of the equation of an ellipse, which we will call the permea-
bility ellipse. This ellipse has semi-axes of length 1WK] and 1K, which correspond to the
principal axes of the permeability tensor. Note that the major axis of the ellipse is in the direc-
tion of minimum permeability. |

lIf each measurement of Kg(on) can be considered an independent measurement of the
value of K then methods of statistics can be used to estimate the parameters
K11, Kyz and K;,. The statistical ;technique can be used on measurements of K,(o) from
different, equally incremented directions on one fracture pattern or the combined measurements

from any number of fracture pattern realizations.

Distribution of K, (o)

In a random fracture pattern, the measured values of K,(ar) will not all plot in a single,
unique ellipse (Figure 5.2). In order to use all of the individual measurements to derive a sin-
gle, most representative set of parameters for the permeability tensor, we must assume that

each measurement is independent and similarly distributed. Figure 5.2 shows an example of a
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Figure 5.2. A set of directional permeability measurements plotted as 1/\/_ in polar
coordinates.
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set of measurements, Ky (o), and a possible ellipse with parameters K, K, and K5,. Each
measurement can be assumed to be distributed about a different mean which is a point on the
ellipse determined by o. Therefore, the value of the mean for each measurement depends on
o. Thus, each Ky (o) is considered to be distributed with the same form but each has a
different or shifted mean. The variance of each Kg(dj is assumed to be identical. In this way,

all the measurements are considered as one population.

It would be very useful to be able.to define ;1 likely distribution function for K (o), but

this is not easily done. The normal distribution does not match the data because K,(a) can

'never be less than zero. A lognormal distribution is not proper because the probability of

K, (o) = 0 is finite, not zero. Exponential; Gamma and Beta distributions also are not suitable.
A normal distn‘butibn truncated at K,(0) =0 is a likely choice. Unfortunately, assuming this
dis’tributibn leads to a contradiction with the basic assumption that all the measurements are
members of the same distribution. At each angle o, the mean value of the distn‘bution is
different. However, since all the distributions are truncated at zero, the difference between the
mean value and tﬁe truncation limit‘is different for each value of o.. This means that each
measurement must be a member of a different, truncated normal distribution and not just a
shifted one as required in the original assumptions. Since a simple, likely, distribution form
for Ky (o) which conforms to the basic assumptions cannot be identified, a least squares regres-

sion technique is used to derive estimates of the parameters K,;, K;, and Ky,

5.2 Finding the Permeability Parameters
The regression technique used is based on a technique, discussed by Scheidegger (1954),
which will also be briefly described.

In order to find the best bit ellipse, we minimize the function R :

N 2
R= X [Kyfon) - Ky (5-8)
n=1
In fact we are not directly regressing to the best-fit ellipse. We are trying to find the parame-

ters Kyy, Ky, and Ky, which best fit the data expressed by K,(a,) in Eq. 5-5. Figure 5.3
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Figure 5.3. A set of directional permeability measurements plotted in cartesian coordinates
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illustrates the type of three parameter curve which is fitted to the data.

A similar technique was used by Scheidegger (1954). Sche_idegger minimized the func-

tion

- N ) 2
R=X [(Kf‘(am»" - (Ki,-r‘mimj] - (5-9)
m=1
Although not stated by Scheidegger, this regression technique 'applies to measurements of per-
meability Kg(o) made in the direction of flow. Thus, m; is a unit vector in the direction of

~ flow. To see this, note that permeability in the direction of flow is defined by

1 Imy
_= . (5-10)
- Ky q .

where q is the specific flux and J; is the gradient.

Substituting Darcy’s law we have

1 -1 Mq;
— = gKy™ —2, (5-11)
X 1 - ‘ -1
' E = (KU) mjmi. (5-12)

So Equation 5-8 is effectively the same as Equation 5-8, except that in 5-9, Kj; becomes the

inverse of the permeability tensor.

The solution of the regression equations is the same as the solution given by Scheidegger

(1954). The equatibns are

JR N 2 '

=0= % -2 [Ky(ow) - K| cos’os, . (5-13)
dK n=1 _
R X - e

=0=) -4 [Kg(a,,) - Kijnini] cososinoy, (5-14)
) ST~ :

—0=% -2 [K-g((x.,,) - Kijnini] sinlar, ' (5-15)
0Kz, el i . S

Rearranging, expanding K;nn;, and putting in matrix form we have



N
Y cos‘o,

n=1

N
Y, cos3oysinoy,

n=1

N
¥ cos?oy,sin®o,

n=1

L
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N
Y 2 cos’oysinay,
=1 )

N =
Y 2 sino,cos’y,

n=1

N
Y 2 sin’o,cosar,

n=1

N
Y, Ky (a,)cos’on

n=1

N
Y, K (04)cos0n,sinoy,

n=1
N sy
: Kg(an)sm o,

n=

N 1r -
Y sinoycos’o,, | |Ki
n=1

N

Y sin*ocos0, | |Kipp| =
n=1

N

Y sinay, Ko,
n=1 1" -

(5-16)

Now, if for each fracture mesh, measurements are made at equal angle intervals from O to 2r,

all sums with only odd powers of sine and cosine drop out and the equation becomes:

[ N N - 11 Kn
Y. cos*o, o - Y sinoycos’er,
n=1 n=1
N
0 Z‘i 2 sin?ay,cos2ot, 0 K| =
N I N
1 ¥ cos’e, 0 Y sin*a,
n=1 n=1 K
! 1| Ko
- N 2 )
Y Kg(op)cos oy,
n=1
N - . :
2, Ky(oy)cosoysino, -17)
n=1 ) :
N )
2 Ky(op)sin“or,
v [ n=1] J
Solving for Ky;, K5, and K;; gives
N - o N N N
Y K (op)sin®oy,| | 3 cosPogsin®o| — | 3 Ky(o)eos?a,| | 3 sin'or, >
n=1 . n=1 n=1 n=1 )
K= N 2 (N N
Y sino,cos?0,| + |3 costay,l| Y sino, 2
n=1 ) n=1 n=1

(5-18)
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N
Y, Ky (ay)cosaysinoy,

Kyp = =L : (5-19)
Y 2 sin?ay,cos%ar, '
n=1
S 2
2 Ky(oy)cos“ar,
) n=1 .
Ky =

N
Y sin’ot,cos’a,
n=1

N N
[_1 Kg(q,,)sinzan] [ 1cos?og,sinzot,,] -

n=

N N
)Y Kg(an)cosz.a.,] { sin‘?an} |
1

n=1 n=

N
[Z sin“oz,,]
n=1

N 1% (N
Y sinfoy,cos?o,| + | Y costor,
n=1 n=1

N
Y, cos’or,

. n=l

- (5-20)
Y sin’o,,cos?
n=]

ELLFMG first reads the directional permeabilities for the flow region, and for the study
region(s) if any had been specified by the user. The sums of the various trigonometric terms
in Equation 5-18, 5-19 and 5-20 are computed by subroutine SUM. Then K;;, K;,, and K5,

are computed using these equations.

5.3 Principal Permeabilities and Directions

Knowing the values of K;; K;, and K,, the values and directions of the principal per-
meabilities K; and K, can be calculated with standard techniques of linear algebra. The tech-
niques are given here only for completeness. In Edelen and Kydoniefs (1972) we have

KiE; = AE; , : ' (5-21)
where E; is a unit vector in a principal direction, or eigenvector, for Kj;; The transformation
K;E; gives a vector 1n the same vdirectionv as E;, but of magnitude A where §;; is the Kronecker
delta. Thus,

(Kij - lsu)EJ =0 . v (5-22)
Here the components of E; and A are unknowns. This equation can have a solution only if

l
v | - « .
K12 Ky —2A| 0. (5-23)
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or

A2 - (K + KA + K jKyy — KB =0 . (5-24)
So the principal permeabilities are

_Ku+Ky V(K + Kp)® — 4K Kpp — K

Ki=A\= 5-25
1=M 7 . > (5-25)
K;; +K Ki; + Kpp)% — 4(K Ky — K
Ky=h,= ~utKe V(K11 + K)” - 4(K;1K - Ki) (5-26)
. 2 2 .
The principal directions, E1; and E2;, are found by solving the equations
Kjj— MOy EL;=0 , (5-27)
and
‘ Ky — A0 E2;=0 , ' (5-28)
for the components of the K1; and E2;.
Let ‘Ej = [;]. Now for each A we have
Ki-%4 Kp X 0 ‘ <20
Kiz Ko —Ajlg| (529
Using row reduction we obtain
. _Kp R _ K
Ky = A Ky -k e
' 2 =| ' (5-30)
Ky =) - _K.E__ 0
0 2= Ky-%] |0

because (K;1—A)(Kp—A;) — K = 0 due to the choice of A (Equation 5-24). So we can choose

x=1,
. —K K
y= A’l 11 - 12 (5-31)
Kz A-Kp :
The E; can be expressed as the unit vectors
1 M - K1D/Kqa
El; = , = . —— (5-32)
a i [M=2An M-Ky
1+ | — A1+ | /—2
| Kz | L Ke
1- (A2 - K1)/Kypp

Ezi = __r-—“—"—————:i' s ——_—f&T Y . (5-33)
’\/1+ M- A 4\/1_*_ M- Ky
K2 Ki2

-
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If A; = A,, the ellipse is circular and any two perpendicular vectors can be eigenvectors. In

this case we can choose

El; = (0,1) | (5-34)
E2; = (1,0).

The eigenvalues and eigendirections are computed using these results.
5.4 Mean Square Error

The mean square error, MSE, is simply given by

N o .
Y, [Kg(ctn) - [Kucosza,, + 2K ,cosoysino, + Knsinzocnﬂ (5-35)
In order to use the MSE 10 compare the data from different fracture samples the MSE must be

normalized as follows.

NMSE = MSE
KK,
1 X : 2 2 1?
NMSE = 3, [Kg(a) - [K“cos o, + 2K ,cososinoy, + Kyosin ocn}] .
NK Ky =1

(5-36)
As NMSE approaches zero, the fracture systems behave more like anisotropic, homogeneous

porous media. But this normalization creates a problem for very anisotropic results. If the
lower principal permeability tends to zero, NMSE as defined above tends to infinity, resulting
in an overflow of the computer. In this case, the definition of NMSE is siightly modified.
Instead of using the product of the principal permeabilities, i.e. the square of their geometric

mean, the program uses the square of the arithmetic mean:

NMSE = .____M§E_2
[(Ky + K3)/2]

ELLFMG then outputs the best-fit tensor characteristics and the mean square error. One or

(5-37)

more files are also printed to serve as an input for plotting both the best-fit ellipse and the
directional permeability results. One file is printed for the flow region, and one file is printed

for each gradient type (local or global) specified for each subregion, if relevant.
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6.0 PLOTTING PROGRAMS ELLP AND DIMES

ELLP and DIMES help the user visualize the outputs of the chain of programs. ELLP
plots the end result after processing by FMG, RENUM, LINEL and ELLFMG is completed.
The equivalent permeability tensor is represented in both polar and cartesian coordinates..

DIMES plots the line network at various stages of the process.

6.1 ELLP

The inpﬁt to ELLP (ELLipse Plot) is constituted by one or more files written by program
ELLFMG. The user does not have to write any input file. The file ELLIPSE.PLT contains
input relative to the flow region coniputations. If study regions were specified by the users,
ELLIPSEGOI.PLT, ELLIPSELO1.PLT, etc. ... contain input relative to the study region compu-
tations, using the global and local gradient respectively (see Section 4.3.2). Each of these files
contains, in pblar coordinates, the pairs (alpha, llxlf(_g) defining the best-fit ellipse and the
directional permeabilities computed by LINEL. Also input are the -direction of the principal

permeabilities and the values of these principal permeabilities.

ELLP determines what the maximum value of 1/VKg is, computes a corresponding scale
for the plots. The computed and fitted values are then plotted, both in polar coordinates and in

cartesian coordinates. Figure 6.1 gives an example of such a plot.

6.2 DIMES

- DIMES plois the fracture networks. As can be seen in Figure 1-1 in the Introduction,
DIMES (DIsc MEShes) can accept plot files from FMG, RENUM, FMG3D, or CHANGE.
When the program is called, it looks for input files in the current computer directory. If files
named DIMESO1.DAT, DIMESQ02.DAT, etc. ... , are presént,__then the network to be plotted is

three-dimensional. Otherwise it is two-dimensional. The three-dimensional mode of operation
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Figure 6.1. Polar and cartesian plots of directional permeabilities.
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of DIMES is documented in Gilmour et al. (1986a and b). It draws a disk network and the

intersections between the discs, from any point of view specified by the user.

A simple option has been added to DIMES in order to also handle two-dimensional net- .
works. If files named LINESO1.DAT, LINESO2.DAT, etc. ..., are present, then these specify a
network of line elements generated either by FMG ér by the three-dimensional channel genera-
tor CHANGE (Billaux, et al., 1988). In the two-dimensional case, DIMES reads the title of .
the plot, the size of the generation region, the angle and size of the flow region, from the files
RENUMGR.DAT, RENUMOO.DAT, RENUMO1.DAT, etc. ... created by FMG. The coordi-
nates of the endpoints of the line segment are then read and all the segments are plotted. The
relative disposition of the generation regic;n Vand the flow region is plotted in a small box in the
lower left comer. If only onevnegion is plotted, it means the region being plotted is the genera-
tion regibn itself. figures 6.2 and 6.3 show the network corresponding to the the permeability

plot in Figure 6.1.
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Figure 6.2. Fractures in the generation region, and the 0° rotation flow region.
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Figure 6.3. Line network in flow regions.
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